Home  |  Bookmark   |  Sitemap

chemicals
zeolite
catalyst
solvent
pigment,intermediates
plastic additives
drilling fluids additives
Cosmetic ingredients
water treatment
electronic
food grade
Pharm intermediate
organic material
detergent materials
new materials
inorganical materials
intermediate
PEO
calcium carbide
barium sulphate
HEC
silicone monomers
organic pigments
phosphate series
ceramic,refractory
acrylic acid series
antimicrobial agent
rubber auxiliary
other
metal products
Contact Infomation
 
News Location:Home >> News Content     
Fluid catalytic cracking
Author:Fluid catalytic crac Date:2015/2/5 22:14:25

Fluid catalytic cracking



Fluid catalytic cracking (FCC) is one of the most important conversion processes used in petroleum refineries. It is widely used to convert the high-boiling, high-molecular weight hydrocarbon fractions of petroleum crude oils to more valuable gasoline, olefinic gases, and other products.[1][2][3] Cracking of petroleum hydrocarbons was originally done by thermal cracking, which has been almost completely replaced by catalytic cracking because it produces more gasoline with a higher octane rating. It also produces byproduct gases that are more olefinic, and hence more valuable, than those produced by thermal cracking.

The feedstock to an FCC is usually that portion of the crude oil that has an initial boiling point of 340 °C or higher at atmospheric pressure and an average molecular weight ranging from about 200 to 600 or higher. This portion of crude oil is often referred to as heavy gas oil or vacuum gas oil (HVGO). The FCC process vaporizes and breaks the long-chain molecules of the high-boiling hydrocarbon liquids into much shorter molecules by contacting the feedstock, at high temperature and moderate pressure, with a fluidized powdered catalyst.

In effect, refineries use fluid catalytic cracking to correct the imbalance between the market demand for gasoline and the excess of heavy, high boiling range products resulting from the distillation of crude oil.

As of 2006, FCC units were in operation at 400 petroleum refineries worldwide and about one-third of the crude oil refined in those refineries is processed in an FCC to produce high-octane gasoline and fuel oils.[2][4] During 2007, the FCC units in the United States processed a total of 5,300,000 barrels (840,000 m3) per day of feedstock[5] and FCC units worldwide processed about twice that amount.

 

 

Flow diagram and process description[edit]

The modern FCC units are all continuous processes which operate 24 hours a day for as long as 3 to 5 years between scheduled shutdowns for routine maintenance.

There are several different proprietary designs that have been developed for modern FCC units. Each design is available under a license that must be purchased from the design developer by any petroleum refining company desiring to construct and operate an FCC of a given design.

There are two different configurations for an FCC unit: the "stacked" type where the reactor and the catalyst regenerator are contained in a single vessel with the reactor above the catalyst regenerator and the "side-by-side" type where the reactor and catalyst regenerator are in two separate vessels. These are the major FCC designers and licensors:[1][3][4][6]

Side-by-side configuration:

Stacked configuration:

Each of the proprietary design licensors claims to have unique features and advantages. A complete discussion of the relative advantages of each of the processes is beyond the scope of this article. Suffice it to say that all of the licensors have designed and constructed FCC units that have operated quite satisfactorily.

Reactor and Regenerator[edit]

The reactor and regenerator are considered to be the heart of the fluid catalytic cracking unit. The schematic flow diagram of a typical modern FCC unit in Figure 1 below is based upon the "side-by-side" configuration. The preheated high-boiling petroleum feedstock (at about 315 to 430 °C) consisting of long-chain hydrocarbon molecules is combined with recycle slurry oil from the bottom of the distillation column and injected into the catalyst riser where it is vaporized and cracked into smaller molecules of vapor by contact and mixing with the very hot powdered catalyst from the regenerator. All of the cracking reactions take place in the catalyst riser within a period of 2–4 seconds. The hydrocarbon vapors "fluidize" the powdered catalyst and the mixture of hydrocarbon vapors and catalyst flows upward to enter the reactor at a temperature of about 535 °C and a pressure of about 1.72 barg.

The reactor is a vessel in which the cracked product vapors are: (a) separated from the so-called spent catalyst by flowing through a set of two-stage cyclones within the reactor and (b) the spent catalyst flows downward through a steam stripping section to remove any hydrocarbon vapors before the spent catalyst returns to the catalyst regenerator. The flow of spent catalyst to the regenerator is regulated by a slide valve in the spent catalyst line.

Since the cracking reactions produce some carbonaceous material (referred to as catalyst coke) that deposits on the catalyst and very quickly reduces the catalyst reactivity, the catalyst is regenerated by burning off the deposited coke with air blown into the regenerator. The regenerator operates at a temperature of about 715 °C and a pressure of about 2.41 barg. The combustion of the coke is exothermic and it produces a large amount of heat that is partially absorbed by the regenerated catalyst and provides the heat required for the vaporization of the feedstock and the endothermic cracking reactions that take place in the catalyst riser. For that reason, FCC units are often referred to as being 'heat balanced'.

The hot catalyst (at about 715 °C) leaving the regenerator flows into a catalyst withdrawal well where any entrained combustion flue gases are allowed to escape and flow back into the upper part to the regenerator. The flow of regenerated catalyst to the feedstock injection point below the catalyst riser is regulated by a slide valve in the regenerated catalyst line. The hot flue gas exits the regenerator after passing through multiple sets of two-stage cyclones that remove entrained catalyst from the flue gas,

The amount of catalyst circulating between the regenerator and the reactor amounts to about 5 kg per kg of feedstock, which is equivalent to about 4.66 kg per litre of feedstock.[1][7] Thus, an FCC unit processing 75,000 barrels per day (11,900 m3/d) will circulate about 55,900 tonnes per day of catalyst.

CaC2 | PEO | ZPC | BaSO4 | HEC | SAP | NaOH | PCE | TCE | MEA | ECH | GMS | HMT | HNO3 | ATBC | HMDS | TAED | ETHYL ACETATE | TiCl4 | TMPTO | H3PO3 | PG | BDO | DIPE | Butyl Acetate | Isopropyl Alcohol | lithium rod | DMDEE |
Copyright © 2008--2024  HUTONG GLOBAL CO.,LTD All Rights Reserved. Designed By Kogin    Sitemap